skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gray, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report frequency comb generation in the mid-IR beyond 4 μm in a dispersion-engineered periodically poled lithium niobate nano-waveguide through simultaneous second-harmonic generation, quadratic spectral broadening, and intra-pulse difference-frequency generation. 
    more » « less
    Free, publicly-accessible full text available May 4, 2026
  2. We theoretically describe and experimentally demonstrate dark soliton formation in a quadratic nonlinear resonator in lithium niobate nanophotonic. The dark pulses have a temporal duration of 40 fs and form a 120-nm-wide coherent frequency comb. 
    more » « less
    Free, publicly-accessible full text available May 4, 2026
  3. Free, publicly-accessible full text available May 4, 2026
  4. Abstract Laser-plasma acceleration of protons offers a compact, ultra-fast alternative to conventional acceleration techniques, and is being widely pursued for potential applications in medicine, industry and fundamental science. Creating a stable, collimated beam of protons at high repetition rates presents a key challenge. Here, we demonstrate the generation of multi-MeV proton beams from a fast-replenishing ambient-temperature liquid sheet. The beam has an unprecedentedly low divergence of 1° (≤20 mrad), resulting from magnetic self-guiding of the proton beam during propagation through a low density vapour. The proton beams, generated at a repetition rate of 5 Hz using only 190 mJ of laser energy, exhibit a hundred-fold increase in flux compared to beams from a solid target. Coupled with the high shot-to-shot stability of this source, this represents a crucial step towards applications. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  5. Abstract The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational-wave signals identified by the LIGO–Virgo–KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal’s source as inferred from the observational data. GWTC is the data release of this dataset, and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO–Virgo–KAGRA observing run up until 2024 January 31. This Letter marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates. 
    more » « less
    Free, publicly-accessible full text available December 9, 2026
  6. Abstract Management of breast cancer in limited-resource settings is hindered by a lack of low-cost, logistically sustainable approaches toward molecular and cellular diagnostic pathology services that are needed to guide therapy. To address these limitations, we have developed a multimodal cellphone-based platform—the EpiView-D4—that can evaluate both cellular morphology and molecular expression of clinically relevant biomarkers directly from fine-needle aspiration (FNA) of breast tissue specimens within 1 h. The EpiView-D4 is comprised of two components: (1) an immunodiagnostic chip built upon a “non-fouling” polymer brush-coating (the “D4”) which quantifies expression of protein biomarkers directly from crude cell lysates, and (2) a custom cellphone-based optical microscope (“EpiView”) designed for imaging cytology preparations and D4 assay readout. As a proof-of-concept, we used the EpiView-D4 for assessment of human epidermal growth factor receptor-2 (HER2) expression and validated the performance using cancer cell lines, animal models, and human tissue specimens. We found that FNA cytology specimens (prepared in less than 5 min with rapid staining kits) imaged by the EpiView-D4 were adequate for assessment of lesional cellularity and tumor content. We also found our device could reliably distinguish between HER2 expression levels across multiple different cell lines and animal xenografts. In a pilot study with human tissue (n = 19), we were able to accurately categorize HER2-negative and HER2-positve tumors from FNA specimens. Taken together, the EpiView-D4 offers a promising alternative to invasive—and often unavailable—pathology services and may enable the democratization of effective breast cancer management in limited-resource settings. 
    more » « less